Survival Tips for Survival Analysis

XIAOTING (TING) WU, PH.D. MS., IS A BIOSTATISTICIAN AT THE DEPARTMENT OF CARDIAC SURGERY AT UNIVERSITY OF MICHIGAN, US. SHE HAS SAS EXPERIENCE FOR MORE THAN 4 YEARS, AND IS ONE OF THE AWARDEES FOR NEW SAS PROFESSIONAL AWARD SAS GLOBAL FORUM 2019. TING HAS MANY YEAR OF EXPERIENCE IN DATA AND STATISTICAL ANALYSIS INCLUDING PREDICTION MODELS, SURVIVAL ANALYSIS, MIXED EFFECT MODELS AND CAUSAL INFERENCE. SHE HAS BROAD INTERESTS IN STATISTICAL METHODOLOGY, STATISTICAL CONSULTING, DATA VISUALIZATION AND SAS APPLICATIONS.

#MWSUG2019 #SSXX

• Survival analysis is a statistical technique that look at the probability of an event occurrence over time.

- Two pieces of information are needed in a survival analysis:
- 1) If the subjects have the event of interest (eg. an indicator status can be coded as 1=event; 0= no event (censoring);
- 2) The follow up time for each subject (specifically this is the time to events for those with events, and time to censoring for those without the events).

Censoring and Truncation

- Censoring: Left, Right, Interval Censoring
- Assumption: censoring is independent and non-informative.
- Truncation: Left, Right

Figure 3.3 Generalized Type I censoring when each individual has a different starting time

Introduction-Basic functions in survival analysis

Assuming X is a continuous random variable with probability density function f(x) and cumulative distribution function $F(x) = Pr(X \le x)$, giving the probability that the event has occurred by duration t.

1. Survival Function

$$S(x) = Pr(X > x) = \int_{x}^{\infty} f(t) dt = 1 - F(x)$$

which is the probability that the event of interest has not occurred by duration t

2. Hazard Function
$$b(x) = \lim_{\Delta x \to 0} \frac{P[x \le X < x + \Delta x \mid X \ge x]}{\Delta x}.$$

which is the instantaneous rate of occurrence of event conditional on subjects survived after time x

3. Cumulative hazard function

$$H(x) = \int_0^x b(u) \, du = -\ln[S(x)].$$

4. The relationship between survival function, probability density function and hazard function

$$b(x) = f(x)/S(x) = -d\ln[S(x)]/dx.$$

Ref: John P. Klein 2013

Introduction-Non-parametric Methods

• Use Kaplan Meier Method- Product-Limit estimator to estimate survival function

$$\hat{S}(t) = \begin{cases} 1 & \text{if } t < t_1, \\ \prod_{t_l \le t} [1 - \frac{d_t}{Y_t}], & \text{if } t_1 \le t \end{cases}$$

For values of *t* beyond the largest observation time this estimator is not well defined

Variance can be defined as
$$\hat{V}[\hat{S}(t)] = \hat{S}(t)^2 \sum_{t_i \leq t} \frac{d_i}{Y_i(Y_i - d_i)}$$

• Use Nelson-Aalen estimator of cumulative hazard to estimate cumulative hazard

$$\tilde{H}(t) = \begin{cases} 0, & \text{if } t \leq t_1, \\ \sum_{t_l \leq t} \frac{d_t}{Y_l}, & \text{if } t_1 \leq t. \end{cases}$$

Introduction-Semi-parametric model

• Cox (1972) Proportional Hazard Model is a semi-parametric model

Given Z as the covariates,

$$b(t \mid \mathbf{Z}) = b_0(t) \exp(\boldsymbol{\beta}^t \mathbf{Z}) = b_0(t) \exp\left(\sum_{k=1}^p \boldsymbol{\beta}_k Z_k\right)$$

Proportional Hazard assumption:

$$\frac{b(t \mid \mathbf{Z})}{b(t \mid \mathbf{Z}^*)} = \frac{b_0(t) \exp\left[\sum_{k=1}^p \beta_k Z_k\right]}{b_0(t) \exp\left[\sum_{k=1}^p \beta_k Z_k^*\right]} = \exp\left[\sum_{k=1}^p \beta_k (Z_k - Z_k^*)\right]$$

If the proportional hazard assumption is violated for a variable, one approach is to stratify on this variable which fits a different baseline hazard function for each stratum.

Introduction- Parametric models

• An example of accelerated failure time (AFT) model with location and scale parameters:

Exponential: $\log h(t) = \mu + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$

Gompertz: $\log h(t) = \mu + \alpha t + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_{\alpha}$

Weibull: $\log h(t) = \mu + \alpha \log t + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_{\alpha}$

• Parametric models and their distribution assumption:

Distribution	Hazard Rate b(x)	Survival Function S(x)	Probability Density Function $f(x)$	Mean E(X)
Exponential $\lambda > 0, x \ge 0$	λ	$\exp[-\lambda x]$	$\lambda \exp(-\lambda x)$	$\frac{1}{\lambda}$
Weibull $\alpha, \lambda > 0,$ $x \ge 0$	$\alpha\lambda x^{\alpha-1}$	$\exp[-\lambda x^{\alpha}]$	$\alpha\lambda x^{\alpha-1}\exp(-\lambda x^{\alpha})$	$\frac{\Gamma(1+1/\alpha)}{\lambda^{1/\alpha}}$
Gamma $\boldsymbol{\beta}, \boldsymbol{\lambda} > 0,$ $x \ge 0$	$\frac{f(x)}{S(x)}$	$1 - I(\lambda x, \beta)^*$	$\frac{\lambda^{\beta} x^{\beta-1} \exp(-\lambda x)}{\Gamma(\beta)}$	$\frac{\beta}{\lambda}$
$Log normal \\ \sigma > 0, x \ge 0$	$\frac{f(x)}{S(x)}$	$1 - \Phi\left[\frac{\ln x - \mu}{\sigma}\right]$	$\frac{\exp\left[-\frac{1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}\right]}{x(2\pi)^{1/2}\sigma}$	$\exp(\mu + 0.5\sigma^2)$

• SAS procedures for survival analysis

LIFETEST	is primarily designed for univariate analysis of the timing of events. It produces life tables and graphs of survival curves. Using several methods, this procedure tests whether survival curves are the same in two or more groups.
PHREG	uses Cox's partial likelihood method to estimate regression models with censored data. The model is less restrictive than the models in PROC LIFEREG, and the estimation method allows for time-dependent covariates.
LIFEREG	estimates regression models with censored, continuous-time data under several alternative distributional assumptions. PROC LIFEREG allows for several varieties of censoring, but it does not allow for time-dependent covariates.
RELIABILITY	provides tools for reliability and survival data analysis and for recurrent events data analysis; fit regression models including accelerated life test models, to combinations of censored data; construct probability and fitted life distribution of censored data.

- The data set is described in Fleming and Harrington (1991). The study originates from Mayo Clinic trial (1974-1984). Primary Biliary Cirrhosis (PBC) is a rare but fatal chronic liver disease, which results in destruction of interlobular bile ducts.
- Event of interest : Death risk of PBC
- Time origin: Treatment start time
- Censoring events: Liver transplant, loss of follow up and end of study period.

Data example

Table 1. Variable specification of data example

Variables	Variable specification
id	case number
futime	number of days between registration and the earlier of death, transplant, or study analysis time
	in July, 1986
status	0=alive, 1=liver transplant, 2=dead
drug	1= D-penicillamine, 2=placebo
age	age in days
sex	0=male, 1=female
ascites	presence of ascites: 0=no 1=yes
hepato	presence of hepatomegaly 0=no 1=yes
spiders	presence of spiders 0=no 1=yes
edema	presence of edema: 0=no edema and no diuretic therapy for edema; .5 = edema present without
	diuretics, or edema resolved by diuretics; 1 = edema despite diuretic therapy
bili	serum bilirubin in mg/dl
chol	serum cholesterol in mg/dl
albumin	albumin in gm/dl
copper	urine copper in ug/day
alk_phos	alkaline phosphatase in U/liter
sgot	SGOT in U/ml
trig	triglicerides in mg/dl
platelet	platelets per cubic ml/1000
stage	histologic stage of disease; 1, 2, 3 or 4.

Get to know the data

proc freq data=pbc; tables drug;run;
proc means data=pbc n mean std median p25 p75 min max fw=6
maxdec=2; var _numeric_; run;

Variable	N	Mean	Std Dev	Median	25th Pctl	75th Pctl	Minimum	Maximum
id	312	156.5	90.21	156.5	78.5	234.5	1	312
futime	312	2006.4	1123.3	1839.5	1191	2702.5	41	4556
status	312	0.86	0.96	0	0	2	0	2
drug	312	1.49	0.5	1	1	2	1	2
age	312	50.02	10.58	49.79	42.14	56.73	26.28	78.44
sex	312	0.88	0.32	1	1	1	0	1
ascites	312	0.08	0.27	0	0	0	0	1
hepato	312	0.51	0.5	1	0	1	0	1
spiders	312	0.29	0.45	0	0	1	0	1
edema	312	0.11	0.27	0	0	0	0	1
bili	312	3.26	4.53	1.35	0.8	3.45	0.3	28
chol	284	369.51	231.94	309.5	249	400	120	1775
albumin	312	3.52	0.42	3.55	3.31	3.8	1.96	4.64
copper	310	97.65	85.61	73	41	123	4	588
alk_phos	312	1982.7	2140.4	1259	867	1985	289	13862
sgot	312	122.56	56.7	114.7	80.6	151.9	26.35	457.25
trig	282	124.7	65.15	108	84	151	33	598
platelet	308	261.94	95.61	257	199.5	323	62	563
protime	312	10.73	1	10.6	10	11.1	9	17.1
stage	312	3.03	0.88	3	2	4	1	4

LIFETEST Procedure

 SAS LIFETEST procedure can be used to perform Kaplan-Meier analysis and describe nonparametric estimate of survival functions. An example of commonly used LIFETEST code is given below.

```
proc lifetest data=pbc outsurv=km_sur2 plots=survival( cl cb=all test atrisk
STRATA=PANEL ) maxtime=4000 ;
   time futime*status(0,1);
   strata drug;
run;
```

• Obtain Kaplan Meier estimates

$$\hat{S}(t) = \begin{cases} 1 & \text{if } t < t_1 \\ \prod_{t_{i \leq t}} \left[1 - \frac{d_i}{Y_i} \right], \text{if } t_1 \leq t \end{cases}$$

The probability of an individual surviving beyond time x (experiencing the event after time x), defined as S(x)=Pr(X > x).

	futime	Censoring Flag: 0=Failed 1=Censored	Survival Distribution Function Estimate	SDF Lower 95.00% Confidence Limit	SDF Upper 95.00% Confidence Limit
265	3336	1	0.5114055615		
266	3358	0	0.5000409935	0.4204226209	0.5744468843
267	3388	1	0.5000409935		
268	3395	0	0.4884121332	0.4074842323	0.5643988816
269	3422	1	0.4884121332		
270	3428	0	0.4764996421	0.3943142214	0.5540592284
271	3445	0	0.464587151	0.3813107797	0.5435993402

• Median survival time

Given x is a continuous random variable then the p_{th} quantile is found by solving S(x^p)=1-p. The median lifetime is the 50th percentile x^{0.5}, the 75 percentile lifetime is the 75th percentile x^{0.75}. (S(x^{0.5}) =1-0.5=0.5; S(x^{0.75}) =1-0.75=0.25).

In product limit estimate, we find the smallest time x^p for which the product limit estimator is less than or equal to 1-p. That is $\hat{X}_p = \inf\{t: \hat{S}(t) \le 1 - p\}$

	Quartile Estimates					futime	Censoring Flag: 0=Failed	Survival Distribution	SDF Lower 95.00%	SDF Upper 95.00%	
Percent	Point	95% C	Confidence In	terval			1=Censored	Estimate	Limit	Limit	
	Estimate					3336	1	0.5114055615			
	Lotinate	Transform	[Lower	[Lower	Upper)		3358	0	0.5000409935	0.4204226209	0.574446884
						3388	1	0.5000409935			
75	•	LOGLOG	4191.00	•		3395	0	0.4884121332	0.4074842323	0.564398881	
						3422	1	0.4884121332			
50	3395.00	LOGLOG	3086.00	3839.00		3428	0	0.4764996421	0.3943142214	0.554059228	
25	1 4 0 7 0 0		1170.00	1025.00		3445	0	0.464587151	0.3813107797	0.543599340	
25	1487.00	LOGLOG	11/0.00	1925.00		3445	1	0.464587151			

Note: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time.

LIFETEST Procedure

proc lifetest data=pbc outsurv=km_sur2 plots=survival(cl cb=all test atrisk nocensor
STRATA=PANEL) maxtime=4000 ;
 time futime*status(0,1);

strata drug;

run;

- Option MAXTIME- truncate plots to avoid time points with small at risk number
- Option ATRISK show number of subjects at risk at each time
- Option nocensored suppress the censor symbols
- Option cl show pointwise confidence limits for the survivor functions (you may also specify the type of confidence band (Hall-Wellner or Equal-Precision) using cb=hw or ep)
- Confidence band for survival function
- 1. Pointwise Cl
- 2. Equal-Precision (EP) confidence band (log transform)
- 3. Hall-Wellner (HW) confidence band

Hall–Wellner bands are wider for small *t* and shorter for large *t*. Both bands are wider than the curves one obtains by using pointwise confidence intervals.

LIFETEST Procedure

Table 3. Two groups survival comparison

Test of Equality over Strata									
Test	Chi-Square	DF	Pr > Chi-Square						
Log-Rank	0.1017	1	0.7498						
Wilcoxon	0.0018	1	0.9664						
-2Log(LR)	0.0634	1	0.8013						

- Log-rank test is standard method to test if the survival curve is different from two groups assuming the hazard is proportional constant over time. $Z_i = \frac{\sum_{j=1}^{J} (O_{i,j} E_{i,j})}{\sqrt{\sum_{j=1}^{J} V_{i,j}}} \stackrel{d}{\to} \mathcal{N}(0, 1)$
- Wilcoxon test places more weight on shorter survival times. When the two survival curves cross, it's
 possible that the hazard ratios change over the time. For example, DRUG 1 has higher survival probability
 in the earlier time, and DRUG 2 is higher in the later time. In this case, Wilcoxon test will be a better
 choice for the two group comparison.
- A likelihood ratio test which is assuming an exponential model is also included to compare the two group survivals

LIFETEST Procedure- Customize your plot

Step 1: Define the macro

run;

Web at http://support.sas.com/documentation/onlinedoc/stat/ex_code/121/templft2.html. 1

Step 3: Customize the plots and compile the template

```
%SurvivalTemplateRestore *make the macro;
%let xOptions = label="Follow up time (Days)"; *change the
title;
%let yOptions = label="Survival" linearopts=(viewmin=0.2
viewmax=1 tickvaluelist=(0 .25 .5 .75 1));
%SurvivalTemplate * compile the templates with the new title;
```

```
Step 4: Restore the default macro and the default templates
%SurvivalTemplateRestore *restore the default macro;
proc template; /* Restore the default templates. */
delete Stat.Lifetest.Graphics.ProductLimitSurvival /
store=sasuser.templat;
delete Stat.Lifetest.Graphics.ProductLimitSurvival2 /
store=sasuser.templat;
```


Ref: Warren Kuhfeld and Ying So, SASGF 2013

LIFETEST Procedure

• Option plots= all provides survival curves and cumulative hazard curve and log of negative log estimated survivor functions cuves.

Figure 2. Plot of Estimated Negative Log Survivor Functions

* Negative log survival function is the cumulative hazard function. This curve approximates a straight line through the origin, indicating an exponential model.

LIFETEST Procedure

• Provide a crude look at the hazard rate over time

```
proc lifetest data=pbc method=pl nelson plots(only)= hazard(kernel=e
bw=100);
```

```
time futime*status(0,1);
```

```
strata drug;
```

run;

PHREG procedure

- The PHREG procedure perform survival regression based on Cox proportional hazard model (Cox 1972). Cox model is a semiparametric model and assumes the hazard of explanatory variables are constant over time.
- The event time for each subject is defined by hazard function.

 $h_i(t) = h(t; z_i) = h_0(t) \exp(z'_i\beta)$

where $h_0(t)$ is a unspecified baseline hazard function, z_i is vector of explanatory variables, β is the model coefficients.

Cox (PH) model assumption:
1) regression coefficient β is constant over time
2) linear combination of the covariates
3) link function is exponential

■ PHREG procedure

An example of commonly used PHREG codes are given below.

```
proc phreg data=pbc simple;
class drug (ref='2') /param=ref;
model futime*status(0,1)=drug;
hazardratio drug/diff=ref cl=wald;
run;
```

Table 4. Output of PHREG procedure

Summary of the Number of Event and Censored Values									
Percent Censored	Censored	Event	Total						
59.94	187	125	312						

Analysis of Maximum Likelihood Estimates												
Parameter		DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	Label				
drug	1	1	0.05709	0.17916	0.1015	0.7500	1.059	drug 1				

Hazard Ratios for drug								
Description Point Estimate 95% Wald Confidence Limits								
drug 1 vs 2 1.059 0.745 1								

PHREG procedure

• Check covariates distribution

```
proc univariate data=pbc; where drug ~=.;
var bili;
histogram bili/normal(mu=est sigma=est) kernel;
*histogram bili/lognormal(scale=est shape=est) kernel;
run;
```


* Consider a model with all the 'significant' variables from the univariable analyses.

```
proc phreg data=pbc2 ;
class drug (ref='Placebo') sex (ref='male') edema (ref='no') ascites(ref='no') hepato(ref='no')
spiders(ref='no') stage (ref='4')/param=ref;
model futime*status(0,1)= drug sex edema ascites hepato spiders stage age logbili logalbumin
logprotime platelet logsgot/ include=1 selection=stepwise slentry=.15 slstay=.20 details;
logbili=log(bili); logalbumin=log(albumin); logprotime=log(protime); logsgot=log(sgot);
format sex sex. drug drug. edema edema. ascites hepato spiders affirm.;
```

run;

- Variable selection can be performed using SELECTION option in the MODEL statement. Stepwise selection uses alternative steps of forward and backward selection.
- SLENTRY is the significance level specified for inclusion (entry).
- The covariate that is found to be *most significant* is selected for entry. SAS uses the score test instead of the LRT.
- SLSTAY governs if the variable should remain in the model. Set SLSTAY *higher* than SLENTRY.
- Some crucial variables can be forced to remain in model during selection process using option INCLUDE.

Table 5. Output of variable selection in a Cox model

	Summary of Stepwise Selection											
Step	Eff	fect	DF	Number	Score	Wald	Pr > ChiSq					
	Entered	Removed		In	Chi-Square	Chi-Square						
1	logbili		1	2	155.9923		<.0001					
2	logalbumin		1	3	33.3877		<.0001					
3	age		1	4	17.6357		<.0001					
4	logprotime		1	5	12.6612		0.0004					
5	logsgot		1	6	3.7772		0.0520					
6	edema		1	7	4.4604		0.0347					
7	stage		3	8	5.4774		0.1400					

PHREG procedure

Table 5. Output of variable selection in a Cox model

Analysis of Maximum Likelihood Estimates												
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label				
drug	D-pencl	1	-0.11018	0.18790	0.3439	0.5576	0.896	drug D-pencl				
edema	yes	1	0.47382	0.23042	4.2287	0.0397	1.606	edema yes				
stage	1	1	-1.70138	1.02752	2.7417	0.0978	0.182	stage 1				
stage	2	1	-0.46428	0.31712	2.1434	0.1432	0.629	stage 2				
stage	3	1	-0.28418	0.22643	1.5751	0.2095	0.753	stage 3				
age		1	0.03620	0.00929	15.1993	<.0001	1.037					
logbili		1	0.73800	0.11515	41.0736	<.0001	2.092					
logalbumin		1	-2.62254	0.76130	11.8667	0.0006	0.073					
logprotime		1	3.52896	1.19089	8.7811	0.0030	34.089					
logsgot		1	0.59723	0.25200	5.6167	0.0178	1.817					

- In PHREG procedure, the ASSESS statement performs the graphical and numerical methods of Lin, Wei, and Ying
 for checking the assumed Cox regression model. The methods show cumulative sums of martingale residuals over
 follow-up times or covariates. Supremum test is also provided to compare the simulation process given the
 assumed model to the observed process. If the observed process is within the patterns of the simulated paths
 and the p values from supremum test is not significant, it indicates that the model specification is valid.
- Martingale residuals

$$\hat{M}_{j} = \delta_{j} - \hat{H}_{o}(T_{j}) \exp\left(\sum_{k=1}^{p} Z_{jk} b_{k}\right) = \delta_{j} - r_{j}, j = 1, \dots, n.$$

Here, the residual Mi can be interpreted as the difference between the observed number of deaths (0 or 1) for subject i between time 0 and Xi, and the expected numbers based on the fitted model.

• Cumulative sums of martingale residuals

 $W_k(z) = \sum_{i=1}^n I(Z_{ik} \le z)M_i \qquad \text{Plotting this vs. } z \text{ checking the functional form of covariate}$ $W_r(r) = \sum_{i=1}^n I(\hat{\beta}' \mathbf{Z}_i \le r)M_i \qquad \text{Plotting this vs. } r \text{ checking the proportional hazard assumption of Cox model}$

• To test if the function forms of continuous variables are correctly specified, option VAR can be used in the ASSESS statement.

```
assess var=(age logbili logalbumin logprotime logsgot);
```


Figure 3. Checking functional form of a continuous variable in Cox model

 To test the proportional hazard assumption, option PH can be used in the ASSESS statement. assess ph /resample=1000 seed=3538626 npath=20;

Table 6. Supremum Test for Proportional Hazards Assumption

Supremum Test for Proportional Hazards Assumption									
Variable	Maximum Absolute Value	Replications	Seed	Pr > MaxAbsVal					
drugD_pencl	1.1200	1000	3538626	0.1640					
edemayes	1.5784	1000	3538626	0.0080					
stage1	0.5833	1000	3538626	0.3300					
stage2	1.0363	1000	3538626	0.2880					
stage3	1.3854	1000	3538626	0.0760					
age	1.0090	1000	3538626	0.2150					
logbili	1.2851	1000	3538626	0.1270					
logalbumin	0.8449	1000	3538626	0.5210					
logprotime	1.9162	1000	3538626	0.0030					
logsgot	0.9886	1000	3538626	0.3380					

- Examining Cumulative Hazard plots for PH assumption
- If proportional hazards assumption holds, then the vertical distance between groups should be constant.

ods output productlimitestimates=pl;

```
proc lifetest data=pbc nelson;
  time futime*status(0,1);
  strata drug;
  format drug drug.;
```

```
run;
```

run;

```
data pl2;
set pl(keep=drug futime Cumhaz censor
where=(censor=0));
logCUMHAZ=log(CUMhaz);
```

```
run;
*Use SGPLOT for plotting;
```

```
proc sgplot data=pl2;
```

series x=futime y=logcumhaz/group=drug; step x=futime y=logcumhaz/group=drug; format drug drug.;

- Use stratified COX model to deal with variables with violating PH assumption. Stratified COX model assumes a different baseline hazard function for each stratum.
- SAS statement: strata edema;

 $\lambda(t|\mathbf{Z}(t)) = \lambda_0(t) \, \exp\{\boldsymbol{\beta}' \mathbf{Z}(t)\}$

 $\lambda_0(t)$ Is the baseline hazard common to all factors in the model

 $\lambda_k(t|\mathbf{Z}(t)) = \lambda_{0k}(t) \exp\{\boldsymbol{\beta}'\mathbf{Z}(t)\},\$

 $\lambda_{0k}(t)$ is the baseline hazard for stratum k, k=1, ..., K.

PHREG procedure- Prediction

For a patient with given condition, the survival probability over time can be calculated from the given model.

```
data var;
   format sex sex. drug drug. edema edema. ascites hepato spiders affirm.;
   input drug edema stage age logbili logalbumin logprotime logsgot label;
  datalines;
 1 0 1 50 0.6 1.3 2.4 4.7 1
 0 0 1 50 0.6 1.3 2.4 4.7 0
proc phreg data=pbc2 plots (cl overlay )=survival atrisk;
where drug ~=.;
class drug (ref='Placebo') edema (ref='no') stage (ref='4')/param=ref;
model futime*status(0,1)=drug edema stage age logbili logalbumin logprotime logsgot;
logbili=log(bili); logalbumin=log(albumin); logprotime=log(protime); logsgot=log(sgot);
format sex sex. drug drug. edema edema. ascites hepato spiders affirm.;
strata edema;
baseline out=test1 covariates=var survival=a / group=drug rowid=label;run;
hazardratio drug/diff=ref cl=wald;
*hazardratio edema/diff=ref cl=wald:
hazardratio stage/diff=all cl=wald;
run;
```

PHREG procedure- Prediction

• Output of stratified COX model and hazard ratios

Summary of the Number of Event and Censored Values									
Stratum	edema	Total	Event	Censored	Percent				
					Censored				
1	no	263	89	174	66.16				
2	yes	49	36	13	26.53				
Total		312	125	187	59.94				

Hazard Ratios for drug								
Description	Point Estimate	95% Wald Confidenc Limits						
drug D-pencl vs Placebo	0.936	0.648	1.352					

Analysis of Maximum Likelihood Estimates										
Parameter		DF	Parameter	Standard	Chi-	Pr > ChiSq	Hazard	Label		
					Square					
			Estimate	Error			Ratio			
drug	D-pencl	1	-0.06656	0.18779	0.1256	0.723	0.936	drug D-		
								pencl		
stage	1	1	-1.87263	1.03158	3.2953	0.0695	0.154	stage 1		
stage	2	1	-0.47868	0.3193	2.2475	0.1338	0.62	stage 2		
stage	3	1	-0.21147	0.22555	0.8791	0.3485	0.809	stage 3		
age		1	0.03644	0.00938	15.1031	0.0001	1.037			
logbili		1	0.70303	0.11517	37.2605	<.0001	2.02			
logalbumin		1	-2.46088	0.76273	10.4098	0.0013	0.085			
logprotime		1	3.70524	1.21602	9.2843	0.0023	40.66			
logsgot		1	0.57008	0.24661	5.3437	0.0208	1.768			

Hazard Ratios for stage									
Description	Point Estimate	e 95% Wald Confidence Limit							
stage 1 vs 2	0.248	0.031	1.982						
stage 1 vs 3	0.19	0.025	1.441						
stage 1 vs 4	0.154	0.02	1.161						
stage 2 vs 3	0.766	0.421	1.391						
stage 2 vs 4	0.62	0.331	1.158						
stage 3 vs 4	0.809	0.52	1.259						

PHREG procedure- Prediction

Figure 4. Plot predicted survival curve from a Cox model

PHREG procedure- Time Dependent Variable

- Time dependent variable could be used to test proportional hazard assumption
- Generate the time dependent covariates by creating interactions of the predictors and a function of survival time and include in the model. If any of the time dependent covariates are significant then those predictors are not proportional.

```
proc phreg data=pbc2 ;
class drug (ref='Placebo') edema (ref='no') stage (ref='4')/param=ref;
model futime*status(0,1)=drug edema edema*gt stage age logbili logalbumin
logprotime logsgot ;
logbili=log(bili); logalbumin=log(albumin); logprotime=log(protime);
logsgot=log(sgot);
gt= log(futime);
format sex sex. drug drug. edema edema. ascites hepato spiders affirm.;
run;
```

Analysis of Maximum Likelihood Estimates									
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label	
drug	D-pencl	1	-0.08461	0.18717	0.2043	0.6512	0.919	drug D- pencl	
edema	yes	1	5.66722	1.79178	10.0040	0.0016		edema yes	
gt*edema	yes	1	-0.77959	0.26643	8.5618	0.0034		edema yes * g	

■ LIFEREG procedure

• Parametric modeling using exponential distribution:

proc lifereg data=pbc2;

```
class drug stage;
model futime*status(0,1)=drug stage
age/ dist=gamma noshape1 shape1=1
noscale scale=1;
```

run;

$$\log T_i = \beta_0 + \beta_1 x_{\lambda} + \dots + \beta_k x_{ik} + \sigma \varepsilon_{\lambda}$$

Dist=*distribution-type*: specifies the distribution type assumed for the failure time

DISTRIBUTION= NOLOG Specified? Resulting Distribution							
EXPONENTIAL	No	Exponential					
EXPONENTIAL	Yes	One-parameter extreme value					
GAMMA	No	Generalized gamma					
GAMMA	Yes	Generalized gamma with untransformed responses					
LOGISTIC	No	Logistic					
LOGISTIC	Yes	Logistic (NOLOG has no effect)					
LLOGISTIC	No	Log-logistic					
LLOGISTIC	Yes	Logistic					
LNORMAL	No	Lognormal					
LNORMAL	Yes	Normal					
NORMAL	No	Normal					
NORMAL	Yes	Normal (NOLOG has no effect)					
WEIBULL	No	Weibull					
WEIBULL	Yes	Extreme value					

• Output from LIEFREG procedure:

Model Information			Analysis of Maximum Likelihood Parameter Estimates									
Data Set	WORK.PBC2	Paramete		DF	Estimate	Standard	95% Cor	fidence	Chi-	Pr > ChiS		
Dependent Variable	Log(futime)	r				Error	Lim	nits	Square	q		
Censoring Variable	status	Intercept		1	9.3633	0.4927	8.3976	10.3291	361.1	<.0001		
Censoring Value(s)	01	drug	1	1	-0.0082	0.1824	-0.3658	0.3494	0	0.9641		
Number of Observations	312	drug	2	0	0	•			•	•		
Noncensored Values	125	stage	1	1	2.7605	1.0102	0.7805	4.7405	7.47	0.0063		
	125	stage	2	1	1.3197	0.2806	0.7698	1.8696	22.13	<.0001		
Right Censored Values	187	stage	3	1	0.7815	0.1993	0.3909	1.1721	15.38	<.0001		
Left Censored Values	0	stage	4	0	0							
Interval Censored Values	0	age	•	1	-0.029	0.0088	-0.0463	-0.0117	10.77	0.001		
Number of Parameters	6	Scale		0	1	0	1	1				
Name of Distribution	Exponential	Weibull		0	1	0	1	1				
Log Likelihood	-295.1126529	Shape										

- The signs of the coefficients tell us the direction of the relationship. β >0 indicates longer time to death (lower hazard) compared to the reference group. β < 0 suggests shorter time (increased hazard) to event.
- Take exponential transformation of coefficients, it could be interpreted as the ratio of the expected (mean or median) survival times for the two groups. For example, given the same other covariates, for treatment effect on death time, there are 100 (exp (-0.0082)-1) = -0.8 percent change in the expected survival time for drug 1 versus drug 2.

Suppose we want estimates and 95% confidence intervals for the 25th, 50th and 75th percentiles for age 58.76, stage 4 with the drug=1 treatment.

```
data covar;
input drug stage age @@;
datalines;
1 4 58.765229295
;
run;
data pbc_var;
set covar(in=one) pbc2;
if one then control=1;
else control=0;
run;
ods select ModObstats;
```

```
proc reliability data=pbc_var;
class drug stage ;
distribution EXPONENTIAL;
model futime*status(0,1)=drug stage age /obstats(quantiles=.25 .50 .75 control=control);
run;
```

RELIABILITY procedure

• Output from RELIABILITY procedure:

Exponential Para	ameter Est	imates				
Parameter		Estimate	Standard	Asymptotic Normal		
			Error	95% Confidence Limits		
				Lower	Upper	
Intercept		9.3633	0.4927	8.3976	10.329	
drug	1	-0.0082	0.1824	-0.3658	0.3494	
drug	2	0	0	0	0	
stage	1	2.7605	1.0102	0.7805	4.7405	
stage	2	1.3197	0.2806	0.7698	1.8696	
stage	3	0.7815	0.1993	0.3909	1.1721	
stage	4	0	0	0	0	
age		-0.029	0.0088	-0.0463	-0.0117	
Shape		1	0	1	1	

Observation Statistics										
futime	status	age	drug	stage	Prob	Pcntl	Stderr	Lower	Upper	
•	•	58.765229	1	4	0.25	605.6902	92.07121	449.6339	815.9096	
•		58.765229	1	4	0.5	1459.363	221.8383	1083.357	1965.87	
	•	58.765229	1	4	0.75	2918.725	443.6766	2166.715	3931.739	

Summary

- Review fundamental survival analysis terms and principles
- Implementation SAS procedures: LIFETEST, PHREG, LIFEREG, RELIABILITY
- Showcase graphs describing survival probability over time
- Apply non-parametric, semi-parametric and parametric methods to estimate risk factors in time to event process

Ref: <u>http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Survival/BS704_Survival_print.html</u>

- 1. John P. Klein , M.L.M., Survival Analysis: Techniques for Censored and Truncated Data. 2005.
- 2. Allison, P.D., Survival Analysis Using SAS: A Practical Guide. Sas Inst., 2010.
- 3. Lin, D., Wei, L. J., and Ying, Z., *Checking the Cox Model with Cumulative Sums of Martingale-Based Residuals.* Biometrika, 1993. 80: p. 557–572.
- 4. Warren F. Kuhfeld and Ying So, SAS Institute Inc. *Creating and Customizing the Kaplan-Meier Survival Plot in PROC LIFETEST.* SAS Global Forum 2013

Name: Xiaoting Wu (Ting), PhD, MS

Organization: Department of Cardiac Surgery, University of Michigan

Work Phone: <u>734.936.7731</u>

E-Mail: <u>xiaotinw@med.umich.edu</u>

#MWSUG2019 #SSXX